Adrenaline Autosound

Mobile Enhancement Professionals in Clayton, NC

  • Home
  • Audio
    • Audio System Tuning
    • Car Audio
    • Custom Fabrication
    • Marine Audio
    • Mobile Video
    • Motorcycle and Power Sports Audio
    • Navigation
    • Upmixer
  • Safety
    • Blind Spot Detection Systems
    • Driver Safety
    • Forward Collision Avoidance
    • Laser And Radar Systems
    • Remote Car Starters and Security
    • Smartphone Integration
  • About Us
    • About Us
    • Why Choose Us?
    • MECP Master Technicians
    • Meet The Owner
    • Hours and Directions
  • Gallery
  • Installs and Articles
    • Domestic
      • Cadillac
      • Chevy
      • Chrysler
      • Dodge
      • Ford
      • GMC
      • Jeep
      • Ram
    • European
      • Audi
      • BMW
      • Ferrari
      • Mercedes
      • Porsche
      • Volkswagen
      • Volvo
    • Asian
      • Hyundai
      • Lexus
      • Nissan
      • Subaru
      • Toyota
    • Motorcycle
      • Harley Davidson
  • Client Reviews
  • Contact
  • Facebook
Home » ARTICLES » Do All Car Audio Amplifiers Double Their Power When Loaded Down?

May 22, 2022 By BestCarAudio.com

Do All Car Audio Amplifiers Double Their Power When Loaded Down?

Double Amplifier Power

If you’ve been around the car audio scene for a few decades, then you’ll recall a time when almost all amplifiers doubled their output power when the load impedance was halved. For example, an amplifier might have been rated to produce 75 watts per channel into a 4-ohm load and 150 watts into a 2-ohm load. It wasn’t unheard of to see low-power amplifiers like the infamous Orion 225 HCCA continue to double their power, right down to 0.5 ohms per channel. Do modern amplifiers behave like this? If not, why?

Making Power from an Amplifier

Let’s start with the basics. Your amplifier is designed to boost the voltage of the signal coming from your radio. By way of an example, let’s say you have a 1-volt RMS signal and you want the amplifier to produce 50 watts of power into a 4-ohm load. The signal would need to be increased to 14.14 volts out of the amp. That’s a signal gain of just over 5 decibels.

Because car audio speakers have a relatively low voice coil impedance (4 ohms), the amplifier will also deliver a significant amount of current to the speaker. In our 50-watt, 4-ohm example, the current flowing through the speaker is 3.536 amps.

One last piece of math. We’ll call this hypothetical amplifier a Class-D design and say that it has an overall efficiency of 80% when driving 4-ohm speakers. To produce 200 watts of power, the amp will need to consume 250 watts of power from the vehicle electrical system. If there’s 13.5 volts at the amplifier power terminals, it will draw 18.52 amps of current from the alternator and battery.

Double Amplifier Power
Power, current and voltage measurements for our 200-watt, four-channel amplifier scenario.

Old-School Amps Were Huge

Back in the day, nobody cared if a 200-watt amplifier was 20 inches long, 12 inches wide and had to be mounted in the trunk. Today, installers want that power from a package that will fit behind the radio or under a seat. Why does the size of the amplifier matter? Well, in order for it to function reliably, the heat sink needs to be large enough to keep the amplifier cool while it produces full power. In this case, our amp needs to shed 50 watts of heat. This number is the difference between the 250 watts it consumes and the 200 watts it delivers to the speakers. Dissipating 50 watts isn’t a significant issue.

Double Amplifier Power
The compact KS125.2 BX2 amplifier produces 70 watts per channel into 4 ohms and 125 watts when loaded to 2 ohms.
Double Amplifier Power
The Sony XM-S400D is rated to produce 45 watts per channel into 2- and 4-ohm loads to ensure reliable operation.
Double Amplifier Power
The four-channel, DSP-equipped Audison AP 4.9 bit produces 70 watts per channel at 4 ohms and 130 watts at 2 ohms.
Double Amplifier Power
The Punch Boosted Rail-Series PBR300X2 amplifier delivers 150 watts per channel into 2 ohms and 100 watts per channel into 4 ohms.
Double Amplifier Power
The DSP-equipped M Four DSP from Helix produces 100 watts per channel into 2- and 4-ohm loads.

Let’s add a second speaker to each channel of the amplifier so that we have a net load impedance of 2 ohms. The amplifier will still attempt to produce 14.14 volts on each output, but it will now flow 5 amps of current to each pair of speakers. We’re up to a total output current of 20 amps from our 14.14 amp draw at 4 ohms. When you load an amp down, its efficiency drops. Let’s say this Class-D amp offers 72% efficiency when driving 2-ohm loads. If the amp is to produce 50 watts to each of the eight speakers (400 watts), it needs to draw 555.6 watts from the car. At 13.5 volts, that would entail 41.15 amps of current flowing into the amplifier. The heat sink will need to dissipate 155.6 watts of thermal energy. That’s a LOT of heat.

Double Amplifier Power
Power, current and voltage measurements for our 400-watt, four-channel amplifier scenario.

When designing this amplifier, the engineer will need to come up with a way for it to manage this 155.6 watts of heat without allowing the components inside the amp to overheat. If the amp has to be very small, this might be a significant problem. Large heatsinks help radiate thermal energy into the air that surrounds the amplifier. Another cooling method is to add a fan to the amplifier design. Fans can dramatically reduce the size of an amplifier and help ensure that they run at cool temperatures. If you choose an amp with a fan, make sure it flows air across the heatsink where the output and switching devices are located. Blowing air into the middle of a circuit board does almost nothing.

The last option, and one that has become quite common, is to limit the amount of current the power supply will pass. Limiting current directly limits the amount of heat energy the heatsink needs to manage. Let’s reverse-engineer how much power our amplifier can produce if we limit the heat sink’s thermal capabilities to 120 watts.

If the energy wasted by the amp is 120 watts at an efficiency of 72%, then the total power it can consume is 430 watts, with 310 watts going to the speakers. In this scenario, each channel is producing 77.5 watts of power and each of the eight speakers would be receiving 38.75 watts when everything running at its maximum output capability.

Double Amplifier Power

Is There Anything Wrong with Current-Limited Amplifiers?

As we’ve demonstrated, limiting current controls the maximum amount of power an amplifier can produce in order to ensure that it doesn’t overheat when pushed to its limits. Are there any drawbacks to a design like this? Not really. Simply, you don’t get as much power when you load the amplifier outputs down further. This design decision isn’t directly detrimental to sound quality, distortion or the addition of noise to the audio signal.

If you’re shopping for an amplifier for your vehicle, drop by your local specialty mobile enhancement retailer and ask them about the best solution for your system design and budget.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Find What You Want

Do Aftermarket Speakers Really Make a Difference? Here’s the Truth

Two speakers and a tweeter

If you’re looking to improve the sound quality in your car, one of the first upgrades most people consider is replacing … [Read More...]

Product Spotlight: DroneMobile XC Connected Dashcam Security System

DroneMobile XC Connected Dashcam Security System

Thieves frequently target vehicles from Hyundai, Kia, Toyota, Lexus, RAM, Chevrolet, and Honda. These vehicles are often … [Read More...]

How to Improve Bluetooth Audio Quality in Your Car: Tips and Tricks

The inside of a car with a cellphone sitting on the middle armrest

Bluetooth audio streaming is a convenient way to enjoy music in your vehicle, but many drivers notice that it doesn’t … [Read More...]

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 23 other subscribers

Tags

2005 2013 2014 2015 2016 2017 2018 Alpine AL Priority Amplifiers Android Auto Apple CarPlay Audiofrog Audiomobile Backup Cameras BMW Cadillac Chevy Compustar Dash Cameras Dodge DroneMobile F-150 Firstech Focal Ford Harley Davidson Jeep JL Audio Kenwood Lexus Mercedes Benz Momento Mosconi Porsche Processors Radios Silverado Sony Sound Deadening Speakers Subwoofers Toyota Tundra Wrangler

Get Directions to Adrenaline Autosound

Address

Adrenaline Autosound
8970 US-70 BUS #400
Clayton, NC 27520
Phone: 919-359-0009
Email: info@adrenalineautosound.com
facebook

Store Hours

SundayClosed
Monday9:00 AM - 6:00 PM
Tuesday9:00 AM - 6:00 PM
Wednesday9:00 AM - 6:00 PM
Thursday9:00 AM - 6:00 PM
Friday9:00 AM - 6:00 PM
SaturdayClosed

Copyright © 2025 Adrenaline Autosound, 8970 US-70 BUS #400 Clayton, NC 27520 Privacy Policy - website by 1sixty8 media, inc.